The Influence Of Binary Representations Of Integers On The Performance Of Selectorecombinative Genetic Algorithms

نویسنده

  • Franz Rothlauf
چکیده

When using representations for genetic algorithms (GAs) every optimization problem can be separated into a genotype-phenotype and a phenotype-fitness mapping. The genotypephenotype mapping is the used representation and the phenotype-fitness mapping is the problem that should be solved. This paper investigates how the use of different binary representations of integers influences the performance of selectorecombinative GAs using only crossover and no mutation. It is shown that the used representation strongly influences the performance of GAs. The binary and gray encoding are two different, well known possibilities to assign bitstring genotypes to integer phenotypes. Focusing our investigation on these two encodings reveals that for the easy integer one-max problem selectorecombinative GAs perform better using binary encoding than using gray encoding. This is surprising as binary encoding is affected with problems due to the Hamming cliff and because there is evidence that shows the superiority of gray encoding. However, the performance of selectorecombinative GAs is determined by the structure of the building blocks (BBs) and not by the structure of the search space. Therefore, the performance difference between the encodings can be explained by analyzing the fitness of the resulting schemata. It reveals for the easy integer one-max problem that binary encoding results in BBs of lower order than gray encoding. Therefore, the integer one-max problem is more difficult and the performance of selectorecombinative GAs is lower when using gray encoding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binary Representations of Integers and the Performance of Selectorecombinative Genetic Algorithms

When using representations for genetic algorithms (GAs) every optimization problem can be separated into a genotype-phenotype and a phenotype-fitness mapping. The genotype-phenotype mapping is the used representation and the phenotype-fitness mapping is the problem that should be solved. This paper investigates how the use of different binary representations of integers influences the performan...

متن کامل

Using both Binary and Residue Representations for Achieving Fast Converters in RNS

In this paper, a new method is introduced for improving the efficiency of the Residue Number System, which uses both binary and residue representations in order to represent a number. A residue number system uses the remainder of the division in several different modules. Conversion of a number to smaller ones and carrying out parallel calculations on these numbers greatly increase the speed of...

متن کامل

EEH: AGGH-like public key cryptosystem over the eisenstein integers using polynomial representations

GGH class of public-key cryptosystems relies on computational problems based on the closest vector problem (CVP) in lattices for their security. The subject of lattice based cryptography is very active and there have recently been new ideas that revolutionized the field. We present EEH, a GGH-Like public key cryptosystem based on the Eisenstein integers Z [ζ3] where ζ3 is a primitive...

متن کامل

Using both Binary and Residue Representations for Achieving Fast Converters in RNS

In this paper, a new method is introduced for improving the efficiency of the Residue Number System, which uses both binary and residue representations in order to represent a number. A residue number system uses the remainder of the division in several different modules. Conversion of a number to smaller ones and carrying out parallel calculations on these numbers greatly increase the speed of...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002